Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The origin of pain in osteoarthritis is poorly understood, but it is generally thought to arise from inflammation within the innervated structures of the joint, such as the synovium, capsule and bone. We investigated the role of nerve growth factor (NGF) in pain development in murine OA, and the analgesic efficacy of the soluble NGF receptor, TrkAD5. OA was induced in mice by destabilisation of the medial meniscus and pain was assessed by measuring hind-limb weight distribution. RNA was extracted from joints, and NGF and TNF expressions were quantified. The effect of tumour necrosis factor (TNF) and neutrophil blockade on NGF expression and pain were also assessed. NGF was induced in the joints during both post-operative (day 3) and OA (16weeks) pain, but not in the non-painful stage of disease (8weeks post-surgery). TrkAd5 was highly effective at suppressing pain in both phases. Induction of NGF in the post-operative phase of pain was TNF-dependent as anti-TNF reduced NGF expression in the joint and abrogated pain. However, TNF was not regulated in the late OA joints, and pain was not affected by anti-TNF therapy. Fucoidan, by suppressing cellular infiltration into the joint, was able to suppress post-operative, but not late OA pain. These results indicate that NGF is an important mediator of OA pain and that TrkAd5 represents a potent novel analgesic in this condition. They also suggest that, unlike post-operative pain, induction of pain in OA may not necessarily be driven by classical inflammatory processes.

Original publication

DOI

10.1016/j.pain.2010.03.002

Type

Journal article

Journal

Pain

Publication Date

05/2010

Volume

149

Pages

386 - 392

Keywords

Analgesics, Animals, Arthralgia, Disease Models, Animal, Etanercept, Immunoglobulin G, Knee Joint, Male, Mice, Mice, Inbred C57BL, Nerve Growth Factor, Neutrophils, Osteoarthritis, Knee, Pain Measurement, Peptide Fragments, Peptides, Polysaccharides, Receptor, trkA, Receptors, Tumor Necrosis Factor, Treatment Outcome, Tumor Necrosis Factor-alpha