Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: In a previous study, we identified a 50-kDa G3-containing aggrecan degradation product in bovine cartilage, released from the tissue after interleukin-1 (IL-1) stimulation in the presence of oncostatin M (OSM). Our objective was to purify, determine the N-terminal sequence of this fragment and verify whether this cleavage could be attributed to a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 action in vitro. METHODS: Collected media from bovine cartilage explant cultures stimulated with IL-1+OSM were subjected to anion-exchange chromatography. The N-terminal sequence of the fragment of interest in the purified fractions was determined by automated Edman sequencing. Fetal bovine aggrecan was digested with full-length recombinant ADAMTS-4 and ADAMTS-5 and resulting degradation products were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) and immunoblotting using an anti-G3 antiserum and an anti-neoepitope antibody that had been generated to the new N-terminus of the G3 fragment. RESULTS: Characterization of the 50-kDa fragment showed that it possesses chondroitin sulfate (CS) and is the result of a cleavage within the C-terminal portion of the CS-2 domain, adjacent to the G3 region. Sequence analysis identified the cleavage region as TQRPAE(2047)-(2048)ARLEIE, suggesting an aggrecanase-derived product. Using an anti-neoepitope antibody specific for the additional cleavage site, it was shown that the product is generated in vitro upon digestion of aggrecan by ADAMTS-5 and, to a much lesser extent, by ADAMTS-4. CONCLUSIONS: The abundance and rapid rate of release of this degradation product in organ cultures in the presence of OSM suggest that it could result from a unique aggrecan proteolysis mediated by aggrecanases.

Original publication

DOI

10.1016/j.joca.2008.02.013

Type

Journal article

Journal

Osteoarthritis Cartilage

Publication Date

10/2008

Volume

16

Pages

1245 - 1252

Keywords

ADAM Proteins, Aggrecans, Animals, Cartilage, Articular, Cattle, Chondrocytes, Chondroitin Sulfates, Interleukin-1, Oncostatin M, Proteoglycans