Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Evans blue dye (EBD) conjugates with albumin in the circulation and is frequently used to measure vascular protein leakage. The fluorescence of the dye from tissue sections can be used to measure its uptake at very specific anatomical locations, but problems arise with dye quantification because tissue components also fluoresce; so-called autofluorescence. We have measured uptake of EBD by blood vessel walls at various points around the aorto-renal branch of rabbits. High resolution, digitised, fluorescence images of histological sections of artery wall allowed detailed microscopic analysis of EBD accumulation; and a ratiometric method was developed to enable autofluorescence to be separated from EBD fluorescence. When EBD-free tissue sections were illuminated with blue light, the ratio of red to green fluorescence was constant throughout the tissue (0.59 +/- 0.03, mean +/- S.D., n = 32). Therefore, at each individual pixel, the level of red autofluorescence could be determined by multiplying the green intensity at that pixel by the calculated red to green ratio. Since EBD fluorescence was detected only in the red region of the spectrum, intensity values of the dye alone were obtained from EBD-exposed tissue by subtracting the red autofluorescence estimated by this ratiometric method. In such cases the red to green fluorescence ratio was measured from adjacent sites known to be free of EDB (0.59 +/- 0.02, mean +/- S.D., n = 56). We were therefore able to increase the sensitivity of tracer quantification by complete elimination of background autofluorescence on a pixel-by-pixel basis. Use of EBD standards allowed calibration of corrected fluorescence intensities and calculation of mass transfer coefficients for albumin into the artery wall. Spatial variations in the permeability of the artery wall around the renal ostium were detected with the present high resolution technique, with an average mass transfer coefficient of (6.8 +/- 0.9) x 10(-8) cm s(-1) for all sites combined (n = 56). The present ratiometric method could potentially be applied to other quantitative fluorescence-based techniques.

Type

Journal article

Journal

Exp Physiol

Publication Date

03/2002

Volume

87

Pages

163 - 170

Keywords

Animals, Arteries, Calibration, Coloring Agents, Evans Blue, Fluorescent Dyes, Microscopy, Fluorescence, Rabbits, Radiometry, Serum Albumin